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ABSTRACT 
 
Kurt Panter, Co-Advisor 
Peter Gorsevski, Co-Advisor 
 
 Valles caldera, in north-central New Mexico, is considered one of the largest rhyolitic 

volcanoes in the United States due to the great amount of volcanic activity over the last 1.61 Ma. 

Although Valles caldera is currently dormant, there is potential for future volcanic activity, and 

therefore it is prudent to assess the risk to the surrounding area well before a disaster strikes. The 

primary objective of this study is to develop one of the first volcanic risk assessments of the 

Valles caldera region through the evaluation of the spatial extent of different volcanic hazards 

and the assessment of social and economic vulnerability of the area at risk. 

 In this study, hazard maps are generated with a GIS-based volcanic hazards tool designed 

to simulate ash fallout, pyroclastic density currents (PDCs), and lava flows based on the Late 

Quaternary (~55 ka) eruptions from within Valles caldera. Simulated ash fall deposits originating 

from El Cajete crater are calibrated to isopach and lithic isopleth maps of the Lower and Upper 

El Cajete ash fall deposits as constructed by Wolff et al. (2011) with modern environmental 

conditions. Additionally, the calibration of PDCs is conducted based on the distribution and run-

out of the Battleship Rock Ignimbrite. Once calibrated, hazards are simulated at two other vent 

locations determined from probability distributions of structural features, in order to generate the 

final hazard maps.  

 In assessing communities’ hazard preparedness, social vulnerability is evaluated for all 

census-designated places within the study site through a principal component analysis of twenty-

four variables shown to increase or decrease social vulnerability. Also, to assess the expected 

loss from hazards, economic vulnerability is evaluated through a multi-criteria evaluation (MCE) 

of population, land use, infrastructure, and economic production, where each factor is 



 

 
 

iii 

categorized and assigned a value representing relative vulnerability based on cost and 

importance. 

Ultimately, the hazard maps and vulnerability assessments are aggregated through 

weighted linear combination and pairwise comparison matrices, creating a total of five risk 

maps. Although the actual maps provide greater detail, overall, the risk maps show that ash fall 

has the greatest impact, effecting areas up to 50 km S/SE of the caldera, including highly 

vulnerable cities, such as Los Alamos, White Rock, and Santa Fe. The PDCs and lava flow 

hazards, however, impact significantly smaller areas, primarily disturbing low vulnerability 

forest. The methodology presented in this paper allows for a robust analysis of the risk the Valles 

caldera area is faced with in the event of volcanic hazards, which is especially useful in focusing 

mitigation strategies to reduce the loss from such hazard events. 
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1. INTRODUCTION 

 Jemez volcanic field in north-central New Mexico is best known for the two cataclysmic 

eruptions that formed Valles caldera at 1.61 and 1.25 Ma, which were followed by an extended 

period of relatively small-scale activity limited to within the caldera moat (Phillips et al., 2007). 

After a ~ 46 ka period of dormancy, new Plinian activity sourced from El Cajete crater in the 

southern region of the caldera began at ~ 55 ka, dispersing tephra well beyond the caldera wall 

(Reneau et al., 1996; Goff and Gardner, 2004). This period of eruptive activity ended with the 

eruption of the Banco Bonito lava flow at ~ 40 ka, and Valles caldera has lain dormant since 

(Goff and Gardner 2004; Gardner et al., 2010).  

Although Valles caldera is currently dormant and an eruption is not imminent in the near 

future, a risk assessment is essential to have in place so that proper mitigation strategies may take 

place well before disaster strikes. With the exception of a report by Los Alamos National Lab 

(Keating et al., 2010), there has been virtually no hazard or risk assessment generated for 

communities in this region of New Mexico, making this an ideal area for conducting such an 

investigation. Thus, the overall purpose of this study is to implement a geographic information 

system (GIS)-based volcanic risk assessment of the area surrounding Valles caldera in north-

central New Mexico. Risk assessments involve the evaluation of the potential hazards that 

threaten an area as well as the vulnerability of elements (i.e. communities, infrastructure) 

exposed to such hazards (Bell, 1999; Blong, 1996; UNESCO). Consequently, the assessment for 

this study of the Valles caldera area involves three primary objectives: (1) evaluating the spatial 

extent of three types of volcanic hazards, (2) assessing communities’ social vulnerability to 

hazards, and (3) evaluating the economic vulnerability of different elements in the area. The 
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three objectives are then aggregated through a GIS-based multi-criteria evaluation (MCE) to 

assess the total risk. 

MCE analysis is a robust decision-making technique that forms a single index of 

evaluation through the assessment of multiple objectives and criteria. The advantage to this 

approach is that there is a significant amount of flexibility in the choice of criteria and the 

method for combining the criteria. The integration of GIS and MCE provides a powerful tool for 

determining the spatial preferences of different decision-making tasks. For this reason, over the 

last twenty-five years or so, MCE analysis has become increasingly useful in the evaluation of 

natural hazards and risk (Malczewski, 2006). For instance, MCE methodology has been used to 

combine various hazards and/or vulnerability criteria in numerous studies including, but not 

limited to, flood risk assessments (Meyer, et al., 2009; Wang et al., 2011; Musungu, 2012), 

seismic hazard and assessments (Erden and Karaman, 2012; Martins et al., 2012), and other 

volcanic risk assessments (Aceves-Quesada et al., 2007). In this study, MCE analysis combines 

the three objectives, the hazards, social, and economic vulnerability, through a weighted linear 

combination (WLC) and pairwise comparison matrix, in which each objective is weighted 

through an analytical hierarchy process, which evaluates the importance of each objective in the 

assessment of volcanic risk, and aggregated into a final risk index score.  

Prior to combining each of the objectives into a risk assessment, each objective is 

individually assessed. In evaluating different volcanic hazards for this study, ash fallout, 

pyroclastic density currents (PDCs) and lava flows are considered the most likely to affect the 

study area given the volcanic history of Valles caldera. The spatial extent of each type of hazard 

is assessed by hazard maps generated with a GIS model specialized in simulating these three 

types of volcanic hazards. Simulations are conducted using realistic parameters based on the 
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most recent eruptive activity within Valles caldera, combined with modern environmental 

conditions. The hazard maps reveal ash fallout generated the most widespread hazard, depositing 

ash as far as ~ 50 km south and southeast of Valles caldera. As anticipated, PDCs impact a 

significantly smaller area than ash fallout, contained to within ~ 10 km of Valles caldera, and 

based on the maps, future lava flows would most likely not travel more than 2 km from their 

source. 

 To assess the vulnerability of the elements threatened by such hazards, the vulnerability 

component of the risk assessment is divided into social and economic vulnerability. The social 

vulnerability assessment is conducted to evaluate communities’ relative levels of hazard 

preparedness, while the economic vulnerability assessment is performed to evaluate the expected 

loss from a volcanic hazard. Social vulnerability is generated through a principal component 

analysis of twenty-four variables predetermined to influence communities’ ability to cope with 

hazards as defined by the Hazards and Vulnerability Research Institute (HVRI, 2012). Economic 

vulnerability is assessed through a MCE of four primary factors thought to produce the greatest 

loss in the event of a hazard, including population, land use, infrastructure, and economic units.  
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2. GEOLOGIC BACKROUND  

In order to understand the types of volcanic hazards an area may be exposed to, it is 

crucial to understand the volcanic history of the source area from which future eruptions may 

occur.  For this study the Jemez volcanic field in north-central New Mexico is considered for 

future eruptions, specifically focusing on eruptions sourced within Valles caldera. 

Jemez volcanic field lies at the intersection of the Rio Grande Rift, a region of crustal 

thinning, and the Jemez lineament, a traverse shear zone, in north-central New Mexico 

(Baldridge and Olsen, 1989; Steck et al., 1998; Self 1990; Goff, 2009). Due to its unique 

location, Jemez volcanic field has been the most productive source of Quaternary volcanism in 

New Mexico (Dunbar, 2005). This area is best known for the two caldera-forming eruptions of 

Valles caldera at 1.61 and 1.22 Ma, which produced the lower and upper Bandelier tuffs, 

respectively, and made Valles caldera one of the largest silicic volcanoes of the late Cenozoic, in 

the United States (Spell et al., 1996; Phillps et al., 2007). Following the cataclysmic eruptions of 

the Bandelier tuffs, a series of comparatively minor rhyolite domes and lava flows, known as the 

Valles Rhyolites, erupted along a ring fracture in the north of the caldera from 1.13 to 0.52 Ma 

(Spell and Harrison, 1993; Phillips et al., 2007) giving Valles caldera its distinct geometry still 

visible today (Wolff et al., 2011). Following this series of eruptions, Valles caldera remained 

dormant for ~46 ka (Wolff et al., 2011). 

The most recent eruptive activity in Valles caldera began at ~ 55 ka (Reneau et al., 1996; 

Goff and Gardner, 2004). This activity has been restructured in the stratigraphic sequence and is 

now known as the East Fork Member, the youngest member of the Valles Rhyolite (Gardner, 

2010; Wolff et al., 2011). The East Fork Member deposits include the El Cajete Pyroclastic 

Beds, Battleship Rock Ignimbrite, and Banco Bonito Flow, all of which originated at or near El 
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Cajete crater, a vent in the southern region of Valles caldera (Gardner, 2010; Wolff et al., 2011). 

The El Cajete Pyroclastic Beds are divided into the Lower and Upper El Cajete deposits 

consisting primarily of Plinian pumice fall dispersed to the southeast and southwest of the El 

Cajete crater, respectively (Wolff et al., 2011). Although only exposures near Valles caldera 

have been mapped, the Lower El Cajete eruption has been estimated to have deposited ~ 50 cm 

of tephra as far away as Santa Fe, a major city ~ 50 km southeast of the caldera (Wolff et al., 

2011). The timing and dynamics of the eruption of Battleship Rock Ignimbrite has not been as 

well constrained as the El Cajete eruptions; however, the Upper El Cajete fall deposits are 

interspersed with PDC deposits, which may be considered equivalent to the lower two units of 

Battleship Rock Ignimbrite (Wolff et al., 2011). Assuming Battleship Rock Ignimbrite originated 

from the El Cajete vent as well, geologic maps show the ignimbrite deposit extended at least 8 

km to the west of the crater, but did not breach the caldera wall (Self et al., 1988). Following the 

El Cajete and Battleship Rock eruptions, the Banco Bonito Flow erupted from a vent 

approximately 1 km northwest of El Cajete crater at ~ 40 ka (Self et al., 1998; Wolff et al., 

2011). The Banco Bonito is an obsidian flow and is considered to have erupted over a period of 

several months and is thought to consist of multiple flow units extending up to 8.5 km west of 

the vent (Self et al., 1988; Wolff et al., 2011). Since the eruption of the Banco Bonito, Valles 

caldera has been dormant. 

Although an eruption similar to the caldera-forming eruptions of the Bandelier tuffs 

would clearly pose the most devastating destruction to the study area, an eruption of this size is 

unlikely in the near future (Wolff et al., 2011). The East Fork Member is compositionally and 

petrographically distinct from any previous eruptions, indicating a new magma source and type 

of activity (Wolff and Gardner, 1995; Wolff et al., 2011). Therefore, it is expected that the most 
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likely type of eruption to occur in the future would be one comparable to the eruptions that 

produced the East Fork Member units (Wolff et al., 2011). Based on the eruptions of the East 

Fork Member, the primary hazards chosen for investigation in this study include, ash fallout, 

PDCs, and lava flows represented by the El Cajete, Battleship Rock, and Banco Bonito deposits, 

respectively. Each deposit served as a prototype for estimating the distribution of these volcanic 

hazards.   
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3. METHODS 

The aim of this thesis was to test and demonstrate a MCE case study for assessing risk in 

the volcanic prone area of Valles caldera. The study site was selected to cover a 75 x 80 km area 

surrounding Valles caldera, encompassing fifty-five communities within Rio Arriba, Sandoval, 

Santa Fe, and Los Alamos counties that could be impacted by future volcanic hazards (Figure 1). 

In performing the MCE analysis, three primary objectives including, the volcanic hazards, social 

vulnerability, and economic vulnerability, were considered and aggregated to calculate the total 

risk. Prior to performing the MCE analysis, however, each objective had to be assessed through 

the evaluation of a series defining factors by various methods (Figure 2). For example, the spatial 

extent of the volcanic hazards was assessed through GIS-model simulations of individual 

hazards, including, ash fall, pyroclastic density currents, and lava flows. On the other hand, the 

social vulnerability of each of the fifty-five communities within the study site was evaluated 

through a principal component analysis of eight statistically significant components. And finally, 

the economic vulnerability was assessed through its own MCE of four economically significant 

factors. After each objective was evaluated, the MCE analysis aggregated the three objectives 

into a final risk index through the use of a weighted linear combination and pairwise comparison 

matrix. 

3.1 Volcanic Hazards 

To assess the impact of volcanic hazards on the study area, hazard maps showing the 

distributions of the three primary types of volcanic hazards known to the area (ash fallout, PDCs, 

and lava flows) were generated through computer simulations. Simulations were conducted by 

VORIS 2.0.1, a GIS-based tool specialized for use in volcanic hazard assessment (Felpeto, 

2009). Assuming, that a future eruption will most likely reflect the size and style of the East Fork 
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Member eruptions, simulations were first conducted at El Cajete crater to calibrate the 

parameters for each hazard to the distribution of the El Cajete Pyroclastic Beds, Battleship Rock 

Ignimbrite, or Banco Bonito Flow under modern environmental conditions (i.e. wind speed and 

direction and topography). Once calibrated, rather than generating the final hazards maps at 

former vents, new vent locations were considered for the source of each of the hazards. The vent 

locations were predicted by modeled susceptibility of various geological features. 

3.1.1 Vent Locations 

In order to determine probable future vent locations from which to simulate each of the 

volcanic hazards, vent susceptibility maps showing the spatial probability for the opening of a 

future vent were generated (Felpeto, 2009; Marti and Felpeto, 2010). The vent susceptibility 

maps were primarily constructed from structural features thought to be influential in determining 

the location of volcanic vents. For this study, these features included existing vents, faults, 

fumaroles, and springs. Shapefiles of each of the structural features were extracted from the most 

recent geologic map of Valles caldera (Goff et al., 2011). From these, four corresponding 

probability density maps were then created through Gaussian or Cauchy kernel functions to 

evaluate each feature’s spatial distribution throughout Valles caldera (Appendix A). To 

determine the overall vent susceptibility from these features, the probability density maps of each 

of the structural features were weighted based on their relevance to a vent location and summed, 

creating the final vent susceptibility map. 

Two final vent susceptibility maps were generated through this process, where one of the 

maps used all four geologic factors, while the second map used only the vent and fault 

distributions. Because the vent and fault probability distributions covered most of the Valles 

Caldera area, the susceptibility map produced by all four variables relied mostly on the 
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probability distribution of the fumaroles and springs. This map was still considered useful since 

fumaroles and springs may have some indication of possible future vent locations; however, a 

second vent susceptibility map was generated based solely on the vent and fault distribution to 

take into account other possible vent locations that may have been overlooked by the first map. 

The first map, referred to as susceptibility map A, produced a cluster of high probability vent 

locations in the western region of the caldera, while the second map, susceptibility map B, 

produced a distinctly different cluster of high probability vent locations on the southeastern 

caldera rim (Figures 3 and 4). In both cases, the weighting of the different geologic variables had 

minimal impact on the final output. Therefore, for susceptibility map A, each structural factor 

was assigned an equal weight of 0.25 and summed together, to calculate the total susceptibility 

for every 30 m pixel in the study area. Similarly, for susceptibility map B, both structural factors 

were assigned a weight of 0.5 and summed. 

 Since both maps A and B produced different clusters of high probability locations, one 

vent was selected from each map from which to run the hazard simulations, considered vent A 

and vent B, respectively. Each of the vents were chosen from a relatively central point with the 

highest probability from within each cluster.  

3.1.2 Ash Fallout 

Simulations for ash fallout were conducted through an advection-diffusion model 

designed for Plinian-style eruptions. The basis for the model lay in the assumption that far from 

the vent particle motion is controlled by advection from wind, diffusion of particles, and 

particle’s terminal settling velocity (Appendix B; Pfeiffer et al., 2005; Felpeto, 2009). In order to 

simulate ash fallout comparable to deposits from the East Fork Member eruptions, model 

constraints dependent on the size and style of the eruption were estimated based on field 
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observations of the Lower and Upper El Cajete pyroclastic fall deposits. Values for these 

parameters were calibrated by comparing model simulations originating at El Cajete crater under 

modern environmental conditions with isopach and isopleth maps from Wolff et al. (2011). 

In the model, eruption volume, column height, particle size, and a coefficient known as 

the A-parameter were required in order to determine the initial distribution of particles vertically 

over the vent. Parameter values for volume, column height and particle size were chosen directly 

from field observations and estimates as described by Wolff et al. (2011) (Table 1). The A-

parameter, however, was experimentally determined through trial simulations. Pfeiffer et al. 

(2005) introduced the A-parameter as a coefficient used to describe the mass concentration of 

particles relative to the column height. Based on observations, it has been estimated that an A-

parameter of 4 generates the most ideal column shape with the maximum mass concentration at 

the height of neutral buoyancy (Pfeiffer et al., 2005). However, with limited knowledge of the El 

Cajete eruption column dynamics and to ensure an A-parameter most reflective of the El Cajete 

eruptions, different coefficients were tested by fitting the resulting ash distributions from 

simulations with isopach maps generated by Wolff et al. (2011). In the end, the A-parameter had 

minimal impact on the isopach shape and area for both the Lower and Upper El Cajete eruptions, 

so the recommended A-parameter of 4 was accepted. 

In order to model the transport of the particles dispersed within the column, constraints 

for particle diffusion, advection of wind, and terminal settling velocity were also used. The 

horizontal diffusion of particles depended on a large variety of factors such as the scale of the 

eruption and particle dimensions, making it difficult to constrain (Folch and Felpeto, 2005; 

Pfeiffer et al., 2005; Macedonio et al., 1988). As a result, the horizontal diffusion coefficient was 

best estimated by fitting simulated isopach maps to field observations, similarly to the calibration 
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of the A-parameter (Pfeiffer et al., 2005; Macedonio et al., 1988). Ash distribution patterns were 

simulated from horizontal diffusion coefficients ranging from 200 m2/s to 10,000 m2/s (Pieffer et 

al., 2005; Macedonio et al., 1988). Comparing the different ash distributions to the isopach maps 

from Wolff et al. (2011), a horizontal diffusion coefficient of 3,000 m2/s was determined to 

produce an output best fitted to both the Lower and Upper El Cajete isopach maps (Wolff et al., 

2011).  

Data for modeling the advection of particles from wind was compiled from the 

University of Wyoming Department of Atmospheric Science sounding database. Daily records 

from Albuquerque, the nearest station to Valles caldera that lies ~80 km to the south, were used 

to calculate monthly average wind height, speed, and direction at 1000 m altitude intervals up to 

~32 to 34 km for January, April, July, and October 2012 (Tables 2 - 5). One month from each 

season was chosen to account for potential seasonal variations in wind direction and intensity, 

which would in turn cause variations in ash fall dispersal patterns. Since January and July wind 

conditions best produced axial orientations and dispersal patterns most reflective of the Lower 

and Upper El Cajete eruptions, respectively, the wind data for these months were used in the 

calibration of the former parameters. However, wind conditions for all four seasons were 

evaluated in simulations for the actual hazard maps. 

The terminal settling velocity of different particles was dependent on parameters 

including, the viscosity and density of air, particle density, and drag. Depending on the height of 

the particles, the model assumed different atmospheric conditions to calculate viscosity and 

density of air; standard atmospheric conditions were used for particles below tropopause, while 

isothermal conditions were used above the tropopause (Folch and Felpeto, 2005). To determine 

the boundary between standard and isothermal conditions, the height of the tropopause was 
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estimated at approximately 12,500 m based on the drastic change in wind speeds occurring at 

that altitude in all four months of wind data. Particle densities estimated by Folch and Felpeto 

(2005) of 2380 kg/m3, 1200 kg/m3, and 800 kg/m3 were considered reasonable values for use in 

calculating terminal settling velocities of ash, coarse ash and lapilli, respectively. Additionally, 

due to limitations in constraining the drag coefficient, the VORIS default drag coefficient of 3.45 

experimentally determined by Folch and Felpeto (2005) was also accepted as sufficient. 

After calibrating parameters under modern environmental conditions to produce Lower 

and Upper El Cajete-type ash distributions (Figures 5 and 6), simulations were conducted at 

vents A and B for the months of January, April, July and October, to determine areas that may 

potentially be affected by future eruptions. 

3.1.3 Pyroclastic Density Currents 

Pyroclastic density currents (PDCs) were simulated with an energy cone model, 

constrained by the topography, collapse equivalent height of the column, and a friction 

parameter, known as the collapse equivalent angle (Appendix C; Felpeto, 2009). A 30 m digital 

elevation model was used as the topography during the PDC simulations. The DEM was derived 

through the compilation of the United States Geological Survey (USGS) 10 m quadrangle DEMs 

provided by the New Mexico Resource Geographic Information Systems and resampled to 30 m 

due to the resolution of other criteria later on in the MCE (NMRGIS, 2012). The eruptive 

constraints of the PDC simulation were estimated from the extent of Battleship Rock Ignimbrite, 

the best example of a PDC from the East Fork Member.  

To begin, the collapse equivalent angle, θ, was calculated by: 

θ = arctan  
𝐻!
𝐿  
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where Hc is the collapse equivalent height and L is the runout length (Felpeto, 2009). For all 

simulations, the runout length was considered equivalent to the most distal exposure of 

Battleship Rock Ignimbrite 8 km from El Cajete crater (Self et al., 1988). Unfortunately, there 

was limited information on the dynamics of the eruption that produced Battleship Rock 

Ignimbrite and the factors most influential in determining the collapse equivalent height. 

Consequently, to simulate PDCs most similar to the Battleship Rock Ignimbrite different 

collapse heights ranging from 100 to 1500 m above the vent, the suggested range from model 

developers, were tested with corresponding friction parameters (Table 6; Malin and Sheridan, 

1982; Felpeto, 2009). The suggested range was confirmed reasonable with studies by Clarke et 

al. (2002) and Sparks and Wilson (1978), who estimated the heights of the jet propulsion region 

of eruption columns from modeled and observed PDCs. Clarke et al. (2000) estimate a range of 

collapse heights from ~800 m to ~1500 m above the vent, and Sparks and Wilson (1978) 

estimated a range 600 m to 900 m, similar to the range of tested values in this study. Using El 

Cajete crater as the source vent, simulations were fit with geologic maps of the Battleship Rock 

Ignimbrite. Based on the calibration, a collapse equivalent height of 1500 m and angle of 10.6° 

were determined to produce a PDC most similar to the known distribution of the Battleship Rock 

Ignimbrite (Figure 7). Although the topography of the area has significantly changed since the 

eruption of the Battleship Rock Ignimbrite, the area and extent of the simulated PDC were still 

similar to the Battleship Rock Ignimbrite. With these constraints, PDC simulations were then 

conducted at vents A and B. 

3.1.4 Lava Flows 

The lava flow simulations relied on a topography-driven probabilistic model to determine 

the paths of a hypothetical lava flow (Appendix D; Felpeto 2007; Felpeto, 2009). In the model, 
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the dynamics of the lava flow were constrained by parameters for maximum flow length and 

flow height, or thickness. To simulate the lava flows the maximum flow length and thickness 

were estimated from the Banco Bonito Flow, the only exposed lava deposit of the East Fork 

Member of the Valles Rhyolite. Maximum flow length was estimated from the farthest known 

extent of Banco Bonito, 7 to 8.5 km from its source (Self et al., 1988; Bailey et al., 1969). The 

thickness of Banco Bonito was more difficult to constrain since it is more variable throughout 

the region. The maximum thickness measured, approximately 149 m, was estimated from a 

drillcore (VC-1); however, it has been thought the flow is of unusual thickness in this area due to 

a paleovalley, making the flow four times thicker than its nearest surface exposures (Goff, 1986). 

This estimation was the best constraint for the thickness of the Banco Bonito; therefore, a height 

correction of 37.25 m was applied in the simulations. Topography for the lava flow simulations 

was derived from the 30 m DEM used for the PDC simulations.  Since the lava flow simulation 

was driven purely by topography and there has been significant change to the topography since 

the eruption of the Banco Bonito Flow, it was not possible to calibrate the flow at El Cajete 

Crater; therefore, simulations were only conducted to estimate future hazards at vents A and B 

(Figure 8). 

3.2 Social Vulnerability 

In this study, social vulnerability was a measure of a person’s ability to respond to and 

recover from a natural hazard, which is crucial to understanding the risk associated with different 

communities (HVRI, 2012). Cutter et al. (2003) originally developed a frequently referenced 

methodology for assessing social vulnerability, the Social Vulnerability Index (SoVI), which has 

since been modified and improved by the Hazards and Vulnerability Research Institute (HVRI) 

over the past decade. Currently, HVRI (2012) recognizes thirty socioeconomic variables 
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representative of social and place inequalities, which have been studied to increase or decrease a 

community’s social vulnerability. With these variables and the SoVI, the HVRI (2012) has 

calculated the social vulnerability of every county in the United States through a principal 

component analysis (PCA). For this study, the methodology developed by Cutter et al. (2003) 

and HVRI (2012) for performing the SoVI was modified to account for the variability in social 

vulnerability strictly within the study site. To show the maximum variability, the SoVI was 

conducted on a smaller scale, focusing on census-designated places (CDPs). Within the study 

site, the CDPs included a total of fifty-five cities and towns where populations were primarily 

focused. This scale allowed for an easy visualization of the variation in social vulnerability of 

individual communities within the study site, rather than entire counties.  

From the thirty variables compiled by HVRI (2012), twenty-four variables were chosen 

as proxies for social vulnerability for this study due to the availability of data from the American 

Community Survey on the CDP-level (Table 7). According to Hatcher (1994), in order to ensure 

an adequate sample size for the PCA there should be at least five times the number of subjects as 

variables. Therefore, in conducting the PCA, data for each of the twenty-four variables was 

downloaded from an expanded area encompassing 228 CDPs in the twelve counties within and 

surrounding the study site. Based on the methods described by Cutter et al. (2003), Schmidtlein 

et al. (2008) and HVRI (2012), the variables were then standardized to z-scores and with the use 

of PCA, reduced to eight statistically significant components by extracting all components with 

an eigenvalue greater than one. The eight principal components in this study, included: ethnicity, 

age, class, poverty/unemployment, wealth, wealth/extractive employment, gender and race 

(Appendix E). Together, the eight components accounted for 64% of the total variance in the 

data (Table 8). The component scores for each CDP were then extracted, assigned appropriate 
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cardinality, and summed to calculate the total vulnerability score (Appendix E; Figure 9). 

Although for analysis the sample area was expanded to 228 CDPs, to compare the vulnerability 

of the fifty-five CDPs of concern, the standard deviation of each vulnerability score from the 

mean of the fifty-five CDPs was used to map the social vulnerability of the study site (Figure 

10). Standard deviations were divided into three categories, including: high vulnerability (> +0.5 

standard deviations), moderate vulnerability (-0.5 to 0.5), and low vulnerability (< -0.5). 

3.3 Economic Vulnerability 

 In this study economic vulnerability was considered a measure of the direct impact of a 

hazard on the elements in the area at risk, or a measure of the economic cost (Aceves-Quesada et 

al., 2007). Economic vulnerability was assessed based on the methods of Aceves-Quesada et al. 

(2007) by means of a MCE of four primary factors, including: population, infrastructure 

(housing units, road type, schools and hospitals), land use, and economic production. Population, 

housing units, and number of schools and medical facilities, were mapped per CDP, and 

economic production was mapped per economic unit, which coincided with six of the CDPs. 

Road type and land use, on the other hand, were mapped over the entire study site (Appendix F).  

To begin, the factors were converted to a common scale by categorizing each factor into 

four classes ranging from low to high vulnerability and assigning a corresponding value from 0 

to 1 based on the relative significance of loss (Table 9; Figure 11). Once the factors were scaled, 

weights were assigned to each factor based on relative importance through a pairwise 

comparison matrix in the GIS program IDRISI Selva (Table 10). For the purposes of this study, 

population was weighted the most important, followed by land use, then infrastructure, and 

finally economic production. The weighted factors were then applied to calculate the total 

vulnerability score using WLC approach. The final output displayed the relative level of 
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expected loss in the area. Based on the original categorization, areas where values were greater 

than 0.75 were considered most vulnerable, or would experience the greatest loss from a volcanic 

hazard event. Similarly, values between 0.5 and 0.75 showed moderately high vulnerability, 

values between 0.25 and 0.49 were moderately vulnerable, and values less than 0.25 were the 

least vulnerable (Figure 12). 

3.4 Risk Assessment 

 As stated previously, risk is the combination of the evaluation of both the hazards and 

vulnerability of an area. In order to combine the hazard maps generated in this study with the 

social and economic vulnerability into a total risk map, the three objectives were aggregated 

through a MCE, similar to the generation of the economic vulnerability map.  

To begin, each of the three objectives were standardized from 0 to 1, depending on the 

degree to which they influenced the total risk. For the ash fall hazards, the isopach maps were 

reclassified into 12 classes based on thickness (Table 11) and reassigned values from 0 to 1 

through the use of a linear fuzzy function, where 0 indicated no ash fall and 1 indicated the 

thickest ash fall deposits >3 m. The PDCs, on the other hand, remained classified as binary, 

where areas impacted by the PDCs were assigned a value of 1 and all other areas were assigned a 

value of 0. Additionally, the sixteen ash fallout hazard maps and two PDC hazard maps were 

then condensed by summing the hazards into five new maps: (1) all Lower El Cajete-type ash 

fallout hazards sourced at vent A, (2) all Upper El Cajete-type ash fallout hazard sourced at vent 

A, (3) all Lower El Cajete-type ash fallout hazards sourced at vent B, (4) all Upper El Cajete-

type ash fallout hazards sourced at vent B, and (5) PDC hazards sourced at vents A and B. The 

condensed ash fallout hazard maps were generated by summing the four seasonal hazard maps 

with an equal weighting of 0.25, which in turn caused areas where ash fallout from different 
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seasons overlapped to reflect higher levels of risk. Similarly, the condensed PDC hazard map 

was generated by summing the two PDC maps with an equal weighting of 0.5. The scores for 

social vulnerability were also reclassified from 0 to 1 through the use of a sigmoidal fuzzy 

function, where areas with no social vulnerability were valued at 0, and the CDP with the highest 

social vulnerability was valued at 1. Finally, due to the methodology of creating the total 

economic vulnerability map, the scores for economic vulnerability were already classified from 0 

to 1. 

In order to create the final risk maps, each of the five new hazard maps were then 

summed with the social and economic vulnerability maps through a weighted linear 

combination. The weights assigned to each map were determined through a pairwise comparison 

of the three objectives, where hazards were given the most weight, while social and economic 

vulnerability were equally weighted (Table 12). Using this weighting each hazard map was 

aggregated with the social and economic vulnerability maps to generate a total of five risk maps 

as shown in Figures 13 and 14. 
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4. RESULTS 

The SoVI and economic vulnerability assessment provide detailed information on the 

vulnerability of the study area. The SoVI shows that when comparing the 55 CDPs within the 

study site, 16 CDPs demonstrate high vulnerability, 27 demonstrate medium vulnerability, and 

12 demonstrate low vulnerability. From mapping the SoVI, it is clear that the least vulnerable 

CDPs are primarily concentrated in the southeast of the study area, while CDPs with moderate 

vulnerability are focused in the northeast of the region (Figure 10). CDPs with standard 

deviations demonstrating high vulnerability, however, are concentrated in the northeast and 

southwest of the study area. While all communities should be prepared in the case of a volcanic 

hazard, it is clear from the SoVI that those communities with high vulnerability, including, 

Tesuque Pueblo, San Jose, Chimayo, Chili, Ohkay Owingeh, Pena Blanca, Santa Clara, Cochiti, 

Hernandez, Cuartelez, Zia Pueblo, San Felipe Pueblo, Sana Cruz, Santo Domingo Pueblo, 

Pueblito, and Cundiyo, would benefit most from resources for improving the communities’ 

ability to respond to and recover from hazards. From the economic vulnerability assessment 

(Figure 11), given that population is weighted with the most importance, all of the communities 

mapped by the CDPs register with at least moderate vulnerability. Those communities with 

greater amounts of infrastructure and economic production show the highest levels of 

vulnerability, including areas such as Santa Fe, Los Alamos, White Rock and Espanola, and 

should expect the greatest economic loss should a hazard impact them. All other areas in the 

study site, where CDPs are not located show predominately low vulnerability, solely influenced 

by road type and forested and ‘other’ land use. 

The hazard simulations indicate ash fallout would be the most widely dispersed of the 

three hazard types directed south and southeast of the caldera, and dispersing ash as far as 50 km 
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from the source, depending on the seasonal variations in wind speed considered (Figures 5 and 

6). In evaluating the ash fallout risk maps, the Lower El Cajete-type eruptions when sourced at 

predicted vent A impact several CDPs including Los Alamos, White Rock, La Cueva, Jemez 

Springs, Cochiti, Cochiti Lake, Santa Clara Pueblo, La Mesilla, San Ildefonso Pueblo, El Rio 

Rancho, Jacona, Jaconita, Pojoaque, Cuyamungue, and Cuyamungue Grant. Each of the CDPs 

effected by this type of eruption are estimated to be impacted with ash fall > 3 m at Los Alamos, 

White Rock, Jemez Springs, and La Cueva to as little as 1-5 mm at CDPs farther east such as 

Jacona, Jaconita, Pojoaque, Cuyamungue, and Cuyamungue. The vulnerability shows that the 

majority of the area affected would be low vulnerability forested areas, however, as expected the 

CDPs would suffer much greater loss, especially areas such as Los Alamos and White Rock 

which show the highest risk and greatest economic vulnerability of the entire affected area and 

lie in the midst of the highest risk area for ash fall deposits. When Upper El Cajete-type 

eruptions are sourced at predicted vent A, significantly fewer CDPs are impacted, limited to: Los 

Alamos, White Rock, San Ildefonso Pueblo, La Cueva, and Jemez Springs. During this type of 

eruption, the CDPs are most likely to be impacted by thinner ash fall deposits, only reaching as 

great as 2 m at La Cueva and ranging from 1 m to as little as 1-5 mm at the other CDPs. Due to 

the smaller deposits of ash, less destruction would be expected than with the previous eruption, 

and therefore CDPs such as Los Alamos and White Rock are considered to be at slightly lower 

risk than before. Additionally, a smaller area of forest would also be disturbed by this 

distribution of ash fall as compared with the previous eruption. When the Lower El Cajete-type 

eruptions are sourced at predicted vent B, a significantly greater number of CDPs are impacted 

than from either of the eruptions at vent A. In addition to the CDPs impacted by the Lower-type 

eruption at A, Tesuque Pueblo, Peak Place, Tesuque, Santa Fe, Agua Fria, La Cienega, 
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Ponderosa, Canon, and Pena Blanca are also affected by the eruption from vent B. As a result, 

the risk associated with this type of eruption and vent location is the most significant, impacting 

the most CDPs and including the most high vulnerability places such as White Rock, Santa Fe, 

Agua Fria, and La Cienega. Interestingly, when the Upper El Cajete-type eruptions are sourced 

at predicted vent B, this hazard shows the least destructive potential, or lowest risk, of all of the 

ash fallout hazards. Ash fall is limited to 1-5 cm at Cochiti Lake, 1 m - 1 mm at White Rock, and 

1 cm - 5 mm at La Cienega, Agua Fria, and Santa Fe. Accordingly, White Rock, with the 

greatest economic vulnerability, is at the highest risk for this type of hazard, while most of the 

rest of the area shows lower risk, primarily consisting of forested and ‘other’ land types. 

Unlike ash fall, the PDCs are contained to within 9 to 10 km of the vents, due to the 

nature of the hazard and parameters considered. As a result, La Cueva, which lies in a valley to 

the southeast of vent A, is the only CDP affect by the PDC hazard (Figure 14). Considering the 

economic vulnerability and the fact that the PDC would obliterate this town, the loss of La 

Cueva would produce the most significant economic loss of the area affected; the majority of the 

rest of the area affected would be low risk, only consisting of forest. However, as shown by the 

PDC calibrations, in the event of a lower collapse height and/or smaller friction angle, PDCs 

may impact more communities, also reaching Jemez Springs Village, farther south of La Cueva. 

Lava flow simulations are the least threatening of all of the hazards, contained to within 2 

km from the vent having minimal impact when erupted from either vent A or B. Due to the scale 

and impact of the lava flows, they are not a concern in the final assessment, which is why risk 

maps were not developed for these hazards. 
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5. DISCUSSION 

 Although the exact activity of a future eruption is unpredictable, validating the eruption 

hazard parameters of each of the hazards with the East Fork Member deposits allows for the 

most realistic simulations possible in estimating the extent of future volcanic hazards. The 

simulations, however, are limited in their precision by a number of factors. For instance, the 

input parameters in the hazard models that are defined by the size and style of the eruption were 

constrained purely on the known extent of the deposits. However, over the past 55 ka the 

deposits, specifically the El Cajete Pyroclastic Beds and Battleship Rock Ignimbrite, have been 

modified by erosion or covered by the Banco Bonito Flow. For example, isopach and isopleth 

maps developed by Wolff et al. (2011) are limited to exposures with thicknesses > 1 m and 

lithics > 1 cm, respectively, even though the original extent of ash fall had to have been much 

greater. From these maps Wolff et al. (2011) calculated the eruption column heights and 

volumes, which were used for parameters in the ash fall simulations in this study. Although these 

are the most current estimations obtainable, they could only be approximated based on the 

mapped extent of the deposits. Additionally, given that the isopach maps only include 

thicknesses > 2 m, simulated ash deposit thicknesses < 2 m could not be calibrated. Similarly, the 

PDC calibrations were constrained by the most distal exposure known of Battleship Rock 

Ignimbrite, although it could have potentially had a farther runout length than what is currently 

exposed. Furthermore, due to the unavailability of wind and topography data at 55 ka, the ash 

fallout simulations could only be calibrated using modern wind conditions and the PDC 

simulations could only be calibrated with current, post-eruption topography, limiting the 

accuracy with which the simulated maps were matched to the geologic and isopach maps. 
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 The HVRI 2006-10 SoVI is the best-known method for estimating the social vulnerability 

of different communities. However, due to limitations in the availability of data, not all variables 

considered by the HVRI 2006-10 SoVI were used in this study, which may have influenced the 

determination of the final components. Also, it must be understood by risk managers that the 

variables chosen are only considered representative of social vulnerability. In order to determine 

the degree to which these variable reflect each community’s social vulnerability, it would be best 

to compare the SoVI to community surveys directly assessing their hazard preparedness, which 

was not feasible within the limits of this study. 

 The economic vulnerability assessment provides an effective way to estimate the 

expected loss from hazards; however, it is limited in that the categorization and ranking of each 

of the factors is a somewhat subjective process. The categorization and ranking of the factors 

would best be determined through group decision making, or by evaluating the exact cost and 

value of each individual element that could be impacted, however neither technique was possible 

in the scope of this study.  Nevertheless, with the methodology presented, the selection, 

standardization, and ranking of the elements of concern, can easily be modified to any risk 

management plan. 

 Although there are clear limitations in modeling the hazards and vulnerability, the overall 

assessment allows for the first complete analysis of the volcanic risk associated with the area 

surrounding Valles caldera. As shown by the hazard maps, ash fall may range from 3 m thick 

deposits to as little as 1 mm thick deposits. Such ash fall is known to cause serious health and 

structural problems, as indicated by eruptions documented around the world. For instance, during 

volcanic eruptions, ash particles as small as 50 microns in diameter can cause a variety of health 

problems including, respiratory complications, eye trauma, and skin irritation (USGS, 2010). In 
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addition to such health complications, ash fall deposits as little as 3 mm have been shown to 

cause serious damage to a variety of vulnerable elements, including buildings, machinery, 

lifelines, and agriculture. For example, ash deposits just millimeters thick can cause significant 

harm to water quality, increasing the turbidity, lowering the pH, and adding harmful chemical 

substances to water sources (Blong, 1984; Wilson et al., 2012). Such small amounts of ash may 

also infiltrate wastewater management systems clogging the equipment, causing failure and 

shutdown, and possibly flooding (Wilcox, 1959; Blong, 1984; Wilson et al., 2012). Similarly, as 

little as 1-3 cm of ash may also significantly disrupt ground transportation networks. Ash may 

impair drivers’ visibility, cause roads to become slippery, cover road markings, and abrade 

vehicle engines (Wilcox, 1959; USGS, 2010; Wilson et al., 2012). Additionally, depending on 

the building structure and ash load, ash fall may cause roof collapse, especially if wet. For 

instance, ash fall deposits as little as 2 cm was shown to cause sagging and partial collapse in 

some buildings during the 1994 eruption of Rabaul, however, roofs that accumulated up to 15 cm 

in ash fall during the 1991 Pinatubo eruption did not experience damage (USGS, 2010; Spence et 

al., 2005). It may be expected, though, from these estimates that areas such as Los Alamos, 

which according to the risk assessment may receive as much as 3 m in ash fall, should expect 

severe structural damage such as roof collapse. Danger from poor driving conditions and roof 

collapse are commonly to blame for loss of life from ash fall hazards, emphasizing that 

prevention and evacuation before experiencing ash fall hazards is crucial. With the risk 

assessment developed in this study, areas that may be impacted by ash fall hazards, especially 

those with areas high vulnerability, including dense road networks, buildings, and populations, 

need to receive proper mitigation and education strategies to prevent such severe damage to 

lifelines and structures, and injury and death that may result. 
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 Furthermore, PDCs are even more threatening to vulnerable elements than ash fall 

hazards since they are nearly impossible to avoid or survive unless previously evacuated. PDCs 

will incinerate, bury, asphyxiate, and bludgeon anything in their path (Sherrod et al., 1997). 

Therefore, it is also crucial to have the risk assessment in place before an eruption in order to 

identify the vulnerable areas that may be threatened by PDCs so that these critical areas, such as 

La Cueva, will be evacuated. 

 Although, as stated in the beginning, Valles caldera is not currently active, this risk 

assessment lays the foundation for risk management in the case of a future eruption. 

Furthermore, the methodology applied in this study may be transferred to any area, including 

active volcanic areas at more imminent risk, such as Mt. Unzen, Japan, or Fuego and Pacaya, 

Guatemala. Considering the flexibility of the methodology applied in this study, the factors and 

objectives presented here may be easily modified to best suit the characteristics of any 

volcanically active area, but no matter, developing a detailed risk assessment through the multi-

criteria evaluation of the social and economic vulnerability with hazard predictions may help to 

advise decision makers in difficult situations, such as allocating resources for hazard prevention 

and evacuation, which in turn will help to reduce the cost of damage and loss of life from 

hazards such as ash fall and PDCs. 
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6. CONCLUSIONS 

 This study presented one of the first full volcanic risk assessments of the Valles caldera 

area, assessing both the potential hazard distributions and the social and economic vulnerability 

of the area. Rather than generating hazard maps based solely on past deposits, a new technique 

was used to generate hazard maps by simulating different volcanic hazards grounded on past 

deposits at predicted future vent locations. The social and economic vulnerability assessments in 

this study, although adapted from established methods, provided a detailed analysis of the level 

of hazard preparedness of each community as well as the level of expected economic loss, which 

has never before been analyzed specifically for this region. Together, the summation of the 

hazards and social and economic vulnerability into a total risk map presented a robust analysis of 

the risk the Valles caldera area may be faced with in the event of a volcanic hazard similar to 

those from the East Fork Member eruptions. This assessment provides not only a new 

methodology for evaluating risk, but a foundation for risk management in north-central New 

Mexico, should Valles caldera become active once again. 
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TABLES 
 
 
Table 1. Parameters for ash fallout. 

  

Parameter Lower El Cajete Upper El Cajete 

Volume (km3) 30.5 0.52 

Column Height (m) 36000 25000 
A Parameter 4 4 

Particle Size   
Mean (ϕ) -4.8 -5.1 

Standard Deviation (ϕ) 1.0 0.7 

Minimum (ϕ) -6.7 -6.3 

Maximum (ϕ) -3.2 -3.7 

Particle Density (kg/m3)   
Big 800 800 

Medium 1200 1200 
Small 2380 2380 

Drag Coefficient 3.45 3.45 
Horizontal Diffusion (m2/s) 3000 3000 

Tropopause Height (m) 12500 12500 
Air Density (kg/m3) 1.2255 1.2255 

Air Temperature (K) 288 288 
Vertical Step (m) 200 200 

Horizontal Step (m) 200 200 
Fi Step 0.5 0.5 
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Table 2. Wind data for January. 
  

Altitude (m) Speed (m/s) Direction 
(degrees) 

2027 316 6 
3009 321 10 
4023 306 14 
5046 300 17 
6007 295 20 
7134 297 21 
7866 313 23 
9174 300 26 
10194 297 27 
11142 300 27 
12136 298 27 
13096 295 25 
14014 290 23 
15134 294 20 
16068 292 18 
17148 290 15 
18196 307 11 
19123 338 8 
20171 12 7 
21089 30 7 
22117 40 8 
23129 53 10 
24034 54 11 
25034 63 11 
26123 106 13 
27201 59 14 
28136 55 16 
29132 54 16 
30288 103 17 
31040 97 17 
31975 80 18 
32690 73 24 
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Table 3. Wind data for April. 
  

Altitude (m) Speed (m/s) Direction 
(degrees) 

1961 330 5 
3038 278 9 
4070 273 12 
5058 269 16 
6017 273 18 
7175 286 21 
7890 282 22 
9210 284 24 
10201 283 28 
11000 267 27 
12105 266 28 
13114 261 25 
14045 261 23 
15110 262 21 
16079 261 19 
17187 253 14 
18222 252 10 
19136 306 6 
20171 350 5 
21079 339 5 
22086 16 5 
23147 343 5 
24051 348 4 
25047 328 6 
26146 337 6 
27153 310 7 
28055 314 9 
29121 287 9 
30229 296 11 
31031 288 12 
31990 271 12 
32939 257 13 
34105 265 14 
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Table 4. Wind data for July. 
 
  Altitude (m) Speed (m/s) Direction 

(degrees) 
1976 322 4 
3050 320 5 
4092 27 6 
5119 55 7 
6082 22 6 
7055 37 6 
7932 62 5 
9100 32 6 
9966 29 6 
11078 25 8 
12269 357 9 
13115 1 8 
14130 1 8 
15137 41 6 
16091 84 6 
16976 50 6 
18136 77 8 
19063 84 10 
20100 89 11 
21051 89 13 
22066 89 13 
23102 88 14 
24122 90 15 
25004 87 15 
26051 89 16 
27075 86 17 
28067 88 19 
29105 87 22 
30251 91 22 
31197 90 23 
32066 89 24 
33047 90 25 
33852 87 28 
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Table 5. Wind data for October. 
  

Altitude (m) Speed (m/s) Direction 
(degrees) 

1987 350 6 
3030 287 10 
4063 284 13 
5004 282 16 
6001 289 18 
7212 279 21 
7925 282 22 
9247 281 25 
10127 275 27 
11008 280 31 
12115 281 34 
13162 282 32 
14066 282 29 
15105 283 26 
16148 284 24 
17166 285 19 
18198 291 13 
19092 283 8 
20132 285 8 
21026 277 8 
22097 239 7 
23083 302 6 
24080 338 6 
25039 7 6 
26162 359 6 
27195 182 5 
28049 334 6 
29026 7 7 
30234 25 7 
31004 19 7 
32034 20 5 
32784 33 6 
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Table 6. Parameters for calibrating pyroclastic density currents. 
 
 
 
 
 
 
 
 
  

Collapse Height (m) Collapse Equivalent Angle (degrees) 

1500 10.6 
1000 7.1 
500 3.6 
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Table 7. Variables for social vulnerability assessment. 

 
 
 
 
 
 
  

Variables Variable Description 
Increases or 
Decreases 

SVI 
QAGEDEP Percent under 5 years and over 65 years of age + 

MEDAGE Median age - 
QFEMALE Percent females + 

QBLACK Percent African American + 
QASIAN Percent Asian + 

QHISP Percent Hispanic + 
QNATAM Percent Native American + 

QMOHO Percent mobiles homes + 
QRENTER Percent of renters  

QNOAUTO Percent of housing units with no car + 
MDHSEVAL Median house value - 

MDRENT Median Rent - 
QFEMLBR Percent female participation in labor force + 

QCVLUN Percent civil unemployment + 
QSERV Percent in service industry + 

QEXTRACT Percent employment in extractive industries + 
QRICH Percent of households earning over $200,000 - 

QSSBEN Percent social security beneficiaries + 
PERCAP Per capita income - 

QPOVTY Percent poverty + 
QFHH Percent female headed household + 

PPUNIT Average household size + 
QED12LESS Percent with less than 12th grade education + 

QESL Percent speaking English “less than very well” + 
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Table 8. Variable loadings for components for social vulnerability index. 

 

Component Dominant Variables Loading 

Ethnicity (Native American) 
(12.5%) 

MEDAGE -0.583 
QHISP -0.681 

QNATAM 0.845 
QFHH 0.647 

PPUNIT 0.789 

Age 
(10.6%) 

QAGEDEP 0.741 
QNOAUTO 0.592 

QFEMLBR -0.712 
QSSBEN 0.796 

Class 
(9.5%) 

QMOHO 0.632 
QSERV 0.678 

QED12LESS 0.639 

Poverty and Unemployment 
(8%) 

QRENTER 0.691 

MDHSEVAL 0.538 

MDRENT 0.638 

Wealth  
(6.8%) 

QASIAN 0.721 
MDRENT 0.558 

Wealth and Extractive Employment 
(6.7%) 

QEXTRCT 0.791 

QRICH 0.821 

Gender 
(5.5%) 

QFEMALE 0.853 

Race (African American) 
(4.7%) 

QBLACK -0.880 
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Table 9. Categorization of factors for economic vulnerability. 

 

Factor 
Low 

Vulnerability 
(0.25) 

Moderate 
Vulnerability 

(0.5) 

Moderately-High 
Vulnerability 

(0.75) 

High 
Vulnerability 

(1) 

Population < 1,500 
People 

1,500 – 6,000 
People 

6,000 – 13,000 
People > 13,000 People 

Land Use Other Forestry Agriculture Urban 

Infrastructure     

Housing 
Units < 800 Units 800 – 4,000 

Units 
4,000 – 6,000 

Units > 6,000 Units 

Road Type Local Collectors Arterials Freeways 

Schools 1 per CDP 2 per CDP 3 – 15 per CDP > 15 per CDP 

Medical 
Facilities 1 per CDP 2 per CDP 3-6 per CDP 7-8 per CDP 

Economic 
Production < $15,000,000 $15,000,000 - 

$30,000,000 
$30,000,000 – 
$45,000,000 > $45,000,000 
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Table 10. Pairwise comparison matrix for economic vulnerability. 

In the pairwise comparison matrix, each of the criteria is rated relative to one another through an analytical hierarchy process. The 
importance of the criterion in each row is compared to the importance of the criterion of the column. The criterion may be considered 
extremely less important (1/9), very strongly less important (1/7), strongly less important (1/5), moderately less important (1/3), 
equally important (1), moderately more important (3), strongly more important (5), very strongly more important (7), or extremely 
more important (9) than the criterion indicated by the column. For instance, land use is considered moderately less important than land 
use, and therefore is assigned a value of 1/3. The consistency ratio for this matrix is 0.01, which is adequate. 

 Population Land Use Housing 
Units 

Road 
Type Schools Medical 

Facilities 
Econ 

Production Weight 

Population 1 - - - - - - 0.4174 

Land Use 1/3 1 - - - - - 0.2146 

Housing Units 1/5 1/3 1 - - - - 0.0833 

Road Type 1/5 1/3 1 1 - - - 0.0833 

Schools 1/5 1/3 1 1 1 - - 0.0833 

Medical 
Facilities 1/5 1/3 1 1 1 1 - 0.0833 

Economic 
Production 1/7 1/5 1/3 1/3 1/3 1/3 1 0.0349 
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Table 11. Reclassification of ash fall hazards. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 12. Pairwise comparison matrix for total risk. 

As shown, the hazards are weighted the highest, while the social and economic vulnerability are 
equal to one another, but moderately less important than the hazards. The consistency ratio for 
this matrix is 0.00, which is adequate. 

Reclassification 
Value Ashfall Thickness (m) 

0 <0.001 
1 0.001 – 0.005 

2 0.005 – 0.010 
3 0.010 – 0.050 

4 0.050 – 0.100 
5 0.100 – 0.250 

6 0.250 – 0.500 
7 0.500 – 0.750 

8 0.750 – 1.000 
9 1.000 – 2.000 

10 2.000 – 3 .000 
11 >3.000 

 Hazard Social 
Vulnerability 

Economic 
Vulnerability Weight 

Hazard 1 - - 0.600 

Social Vulnerability 1/3 1 - 0.200 

Economic Vulnerability 1/3 1 1 0.200 
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FIGURES 

 
 Figure 1. DEM location map of the study area including the 55 census designated places 
focused on in the vulnerability assessments. 
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Figure 2. Conceptual framework for developing the overall risk assessment.  
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Figure 3. Vent susceptibility map generated from probability distribution of vents, faults, springs and fumaroles (left). 
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Figure 4. Vent susceptibility map generated from probability distribution of vents and faults 
(left).  
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Figure 5. Maps of the Lower El Cajete calibration for each month of wind data. 
  



 43 

 

Figure 6. Maps of the Upper El Cajete calibration for each month of wind data. 
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Figure 7. Maps of the Battleship Rock Ignimbrite calibration for PDCs of different collapse 
equivalent heights and angles. 
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Figure 8. Maps of the lava flow simulations at vents A and B. 
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 Figure 9. Individual maps of the standard deviation from the mean of principal component scores for each CDP.  
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Figure 10. Map of the standard deviations from the mean of the total social vulnerability score 
for each CDP. 
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Figure 11. Individual maps of the economic vulnerability of each factor from vents A and B. 



 49 

Figure 12. Map of total economic vulnerability for the entire study site. 
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Figure 13. Total risk maps for ash fallout hazards, varied by size of eruption and location. 
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Figure 14. Total risk map for PDC hazards sourced from vents A and B. 
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APPENDIX A: Probability Density Function Methods 

Probability density maps for each of the four geologic variables were derived through 

VORIS from Gaussian or Cauchy kernel functions. The Gaussian and Cauchy kernel functions 

indicated the probability of another event (vent, fault, fumarole, or spring) occurring at a given 

location as a function of the distance to other nearby events and a smoothing constant, h (Martin 

et al., 2004). A nearest neighbor test was conducted in which the fraction of vents, faults, 

fumaroles or springs was plotted against the distance to the nearest neighbor. The experimental 

plot was then fit to theoretical plots of Gaussian or Cauchy distributions with different h values 

to determine which kernel and smoothing factor best described each variable’s spatial 

distribution (Figure A.1-A.4; Marti and Felpeto, 2010; Martin 2004). The R code for 

constructing the theoretical plots was as follows: 

  >x=rcauchy(n=1000,location=0,scale=1) 
  >cfd=x 
  >breaks=seq(0,7,by=0.01) 
  >cfd.cut=cut(cfd,breaks,right=FALSE) 
  >cfd.freq=table(cfd.cut) 
  >cumfreq0=c(0,cumsum(cfd.freq)) 
  >xmin=min(cumfreq0) 
  >xmax=max(cumfreq0) 
  >cumfreq.std=(cumfreq0-xmin)/(xmax-xmin) 
  >smooth=locfit(cumfreq.std~lp(breaks,nn=0.20,deg=3)) 

>plot(smooth,lwd=2,col="grey") 

where rcauchy or rnorm was used to produce Cauchy or Gaussian curves, respectively, and the h 

factor was varied by changes in the scale value. 
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 Figure A1. Nearest neighbor test for faults indicating a Gaussian kernel with a smoothing factor 
of 1750 m would best be used for calculating the probability density of vents 
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Figure A2. Nearest neighbor test for faults indicating a Gaussian kernel with a smoothing factor 
of 250 m would best be used for calculating the probability density of faults. 
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Figure A3. Nearest neighbor test for faults indicating a Gaussian kernel with a smoothing factor 
of 200 m would best be used for calculating the probability density of fumaroles. 
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Figure A4. Nearest neighbor test for faults indicating a Cauchy kernel with a smoothing factor 
of 250 m would best be used for calculating the probability density of springs. 
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APPENDIX B: Ash Fallout Simulation Methods 

The following information on the ash fallout model originated from Folch and Felpeto 

(2005) and Felpeto (2009). The ash fallout simulation relied on an advection-diffusion model, 

governed by: 

𝜕𝐶!
𝜕𝑡 +𝑊!

𝜕𝐶!
𝜕𝑥 +𝑊!

𝜕𝐶!
𝜕𝑦 +𝑊!

𝜕𝐶!
𝜕𝑧 −

𝜕𝑣!𝐶!
𝜕𝑧 = 𝐾!

𝜕!𝐶!
𝜕𝑥! + 𝐾!

𝜕!𝐶!
𝜕𝑦! +𝐾!

𝜕!𝐶!
𝜕𝑧! + 𝑆! 

where Cj is the concentration of particles of class j, t is time, (Wx, Wy, Wz) are the wind field, vj is 

the fall velocity of particles of class j, Kx, Ky, and Kz are the horizontal diffusion coefficients, and 

Sj is the source function. For simplification, it was assumed that all of the mass is emitted at t=0 

forming a vertical line divided into n sections over the vent, vertical wind and diffusion were 

neglected, and horizontal diffusion coefficients were equal. 

In order to determine the dispersion of particles in the eruption column, the volume of 

particles of a particular Φ size at any given height, z, was determined by the equation: 

𝑉! 𝑧 =
𝑉
2𝜋𝜎!

𝑒
!!!!!

!

!!!
!

×

𝐴
𝑣!!

!
1− 𝑧

𝐻!
𝑒
   !!!!

!
!!

!!

𝐻! 1− 1+ 𝐴
𝑣!!

𝑒
! !
!!!

 

where V is the total volume, Φm is the mean value of the particle distribution σΦ is the standard 

deviation of the particle distribution,  HT is the maximum height of the eruption column, A is a 

column shape factor, and vΦ0 is the terminal settling velocity of particles of size Φ at sea level. 

For every class of particles considered (Φ1, Φ2, Φ3, ..., ΦN) and for every vertical section, 

VORIS calculated the trajectory of the center of the mass of particles based on the terminal fall 

velocity, horizontal diffusion, and the advection from wind until the mass reached the ground 

surface. 
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Once the deposition location of the center of the mass for a given particle size and 

column section was determined, the time that it took for the mass to cross each layer was 

summed for a total fall time. The total fall time was then be used to determine the thickness of 

particles of size Φ that fall from height zi by the equation:  

𝑇!" =
𝑉!"
4Δ𝑥! erf

Δ𝑥 − x− 𝑥!!"
2 𝐾𝑡!"##  !"

+ erf
Δ𝑥 + x− 𝑥!!"
2 𝐾𝑡!"##  !"

− erf
Δ𝑥 − y− 𝑦!!"
2 𝐾𝑡!"##  !"

+ erf
Δ𝑥 + y− 𝑦!!"
2 𝐾𝑡!"##  !"

   

where (x0Φj, y0Φj) is the location of the center of the mass at ground level and Δx is the size of the 

source function. The total thickness of the deposit was calculated by summing the deposit 

thickness from every column section for each class of particles. 
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APPENDIX C: PDC Simulation Methods 

The simulations for PDCs relied on the use of an energy cone model for determining 

which cells in a DEM may be impacted by the hazard. In this model, an energy line, with a 

starting point at the collapse equivalent height of the source and an inclination of 𝜃, was 

extended 360° around the source to define the energy cone (Malin and Sheridan, 1982; Toyos et 

al., 2007; Felpeto, 2009). The intersection of the energy line with the ground determined the 

distal limits of the PDC. The model then calculated if cell ij would be affected by the PDC if hij 

> 0, where: 

ℎ!" = 𝐻! + 𝐻! − 𝑑!" tan𝜃 − ℎ!!" 

and H0 is the topographic height of the vent, Hc is the collapse equivalent height, dij is the 

distance from the vent to cell ij, 𝜃 is equal to arctan(Hc/L), and hoij is the topographic height of 

cell ij. Since the energy cone model only considers individual cells and not the influence of the 

surrounding topography, an accessibility algorithm was then used to prevent the PDC from 

accessing cells that are actually protected by topographic barriers (Toyos et al., 2007; Felpeto, 

2009). The final result is a binary map, where cells that are impacted by the PDC are assigned a 

value of 1 and all other cells a value of 0 (Toyos et al., 2007; Felpeto, 2009). 
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APPENDIX D: Lava Flow Simulation Methods 

The following description of the lava flow model was derived from Felpeto et al. (2001) 

and Felpeto (2009). The model for lava flow simulations was predominantly topography driven. 

The primary assumption was that the flow in any given cell could only move to its neighboring 

cells if the elevation in the occupied cell was greater than the elevation of the neighboring cell. 

The probability of the flow propagating to any one of its eight neighboring cells (i = 1, 2, …, 8) 

was given by: 

𝑃! =
∆ℎ!
∆ℎ!!

!!!
 

where, 

∆ℎ! = ℎ! + ℎ! − ℎ!   if   ℎ! + ℎ! − ℎ! ≥ 0 

∆ℎ! = 0  if  (ℎ! + ℎ! − ℎ!) < 0 

and h0 is the elevation of the cell occupied by the flow, hc is a user-specified height correction 

accounting for the thickness of the lava flow, and hi is the height of the cell under evaluation. 

The selection of which cell the flow will actual enter was determined through a Monte Carlo 

algorithm. Additionally, the model accounted for possible topographic sinks, where the occupied 

cell has a lower elevation than the eight neighboring cells even with the height correction. In this 

situation, the model considered that in nature the sink would fill and the flow would most likely 

continue on; therefore, in the case of a sink the model looked to the neighboring sixteen cells. If 

any of the sixteen cells was accessible for the flow to continue, the model proceeded, otherwise 

the flow stopped. In order to prevent the simulated flow from reaching an inexplicable length, a 

user-defined maximum flow length is also incorporated into the model to stop the flow at a 

realistic point. Multiple iterations were run during a single simulation to account for many 
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possible paths; the probability of each cell being occupied by the lava flow was determined by 

the ratio of the number of paths that have crossed that cell to the total number of paths. 
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APPENDIX E: Principal Component Analysis 

 In order to optimize the twenty-four variables used in the analysis of the social 

vulnerability index, the standardized variables for 228 CDPs were put into a principal component 

analysis with the use of SPSS, a software specialized for statistical analysis. The output provided 

loading scores indicating how each variable correlated with each component, as well as the 

eigenvalues, from which the variance for each component was calculated and proportion of the 

variance explained by each component (Table E1). Using this information, the components were 

reduced to the most statistically optimal for farther analysis based on the Kaiser criterion, which 

states that all components with an eigenvalue greater than one should be used for analysis 

(Hatcher, 1994; Emrich personal communication, 2013). Following the Kaiser criterion, if all 

components with an eigenvalue greater than one were extracted, the analysis would be reduced 

to the first eight components. The first eight components were then rotated through varimax 

rotation to maximize the variance (Table E1). 

 Following the rotation of the components, the factor loadings for each component were 

then used to determine which variables correlated highly with each component (Table E2). 

Additionally, as directed by HVRI (2012) methods, appropriate cardinalities for each of the 

components were assigned depending on the variable loadings to assure positive component 

loadings were associated with increased vulnerability and negative component loadings were 

associated with decreased vulnerability. Ethnicity, age, class, poverty/unemployment, and gender 

were assigned positive cardinality, while wealth, wealth/extractive employment, and race were 

assigned negative cardinality. The two components representing wealth were assigned negative 

cardinality due to the fact that wealth allows communities to recover from disaster more readily 

due to insurance, social safety nets, and entitlement programs (Cutter et al., 2003). Additionally, 
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race was assigned negative cardinality due to the fact that the variable loaded negatively on the 

component, however African American minorities are considered to increase social vulnerability. 

Based on the cardinality, the component scores for each CDP were summed together for a total 

social vulnerability score with the following equation: 

𝑆𝑜𝑉𝐼 = 𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 + 𝐴𝑔𝑒 + 𝐶𝑙𝑎𝑠𝑠 + 𝑃𝑜𝑣𝑒𝑟𝑡𝑦 −𝑊𝑒𝑎𝑙𝑡ℎ − 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒 + 𝐺𝑒𝑛𝑑𝑒𝑟 − 𝑅𝑎𝑐𝑒 
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Table E1. The variance explained for the initial principal component analysis of all twenty-four 
variables and the eight optimal components before and after rotation. 
 

Component 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 
Cumulative 

% 
Total 

% of 
Variance 

Cumulative 
% 

Total 
% of 

Variance 
Cumulative 

% 

1 4.307 17.944 17.944 4.307 17.944 17.944 2.999 12.494 12.494 

2 2.788 11.618 29.562 2.788 11.618 29.562 2.562 10.676 23.170 

3 2.031 8.463 38.025 2.031 8.463 38.025 2.290 9.541 32.711 

4 1.652 6.883 44.908 1.652 6.883 44.908 1.910 7.960 40.671 

5 1.310 5.460 50.367 1.310 5.460 50.367 1.641 6.837 47.508 

6 1.187 4.946 55.314 1.187 4.946 55.314 1.619 6.747 54.254 

7 1.120 4.668 59.982 1.120 4.668 59.982 1.317 5.489 59.744 

8 1.073 4.470 64.451 1.073 4.470 64.451 1.130 4.707 64.451 

9 .978 4.076 68.527       

10 .910 3.793 72.320       

11 .853 3.556 75.876       

12 .822 3.423 79.299       

13 .703 2.931 82.230       

14 .667 2.780 85.010       

15 .561 2.336 87.346       

16 .491 2.047 89.394       

17 .480 2.002 91.396       

18 .436 1.816 93.211       

19 .430 1.790 95.001       

20 .331 1.380 96.382       

21 .274 1.143 97.525       

22 .252 1.050 98.575       

23 .180 .751 99.327       

24 .162 .673 100.000       
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Table E2. Variable loadings on each of the eight optimal components, highlighting the optimal 
components for each component. 
 

 Component 

1 
Ethnicity 
(Native 

American) 

2 
Age 

 

3 
Class 

 

4 
Poverty and 

Unemployment  

5 
Wealth  

6 
Wealth 

and 
Extractive 

7 
Gender 

8 
Race 

(Black) 
 

 (+) (+) (+) (+) (-) (-) (+) (+) 

QFEMALE .050 .135 -.004 .045 .012 -.022 .853 -.082 

QAGEDEP -.154 .741 -.033 .036 -.097 .032 .429 .049 

MEDAGE -.583 .393 -.198 -.299 .188 -.112 -.125 .034 

QBLACK -.034 .005 -.051 .018 .027 -.040 .075 -.880 

QASIAN .040 -.028 .071 .092 .721 .069 -.126 -.097 

QHISP -.681 .008 .279 .072 -.299 .166 .060 .155 

QNATAM .845 .126 .054 .181 -.050 -.118 -.126 .005 

QMOHO -.135 -.275 .632 -.241 -.200 .290 -.016 .009 

QRENTER .098 -.266 -.159 .691 -.066 -.001 -.052 .217 

QNOAUTO .151 .592 .231 .076 .123 -.161 -.130 .157 

MDHSEVAL -.317 -.062 -.492 -.111 .474 -.024 .195 .103 

MDRENT -.225 -.088 -.123 -.368 .558 .003 .197 .083 

QFEMLBR -.064 -.712 -.019 -.051 .046 -.141 .049 .347 

QCVLUN .201 .083 .025 .538 -.011 -.054 .011 -.058 

QSERV .145 .041 .678 .119 .082 -.182 .256 .020 

QEXTRCT -.032 .077 -.062 -.084 -.143 .791 -.018 .003 

QRICH -.012 .073 -.079 -.033 .282 .821 .008 .036 

QSSBEN -.126 .796 -.019 -.139 -.147 .201 .163 .049 

PERCAP -.351 -.067 -.469 -.390 .470 .005 .021 .093 

QPOVTY .013 .071 .343 .668 -.041 -.090 .138 -.109 

QFHH .647 .039 .069 .130 -.090 .067 .021 .230 

PPUNIT .789 -.125 .143 .056 -.141 .014 .132 -.056 

QED12LES .054 .359 .639 .076 -.034 -.181 -.172 .133 

QESL -.032 .006 .428 .352 .075 -.076 -.298 .009 
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APPENDIX F: Data for Economic Vulnerability 

Data on the population, housing units, and economic production were gathered from the 

U.S. Census Bureau 2007-2011 American Community Survey for each CDP or economic unit. 

To determine the number of schools per CDP, the address for each school in Rio Arriba, 

Sandoval, Santa Fe, and Los Alamos counties was extracted from the New Mexico Educational 

Personnel Directory 2011-2012, which listed all public, private, charter, state-supported, regional 

education cooperative, high education, kindergarten, and special education schools in the state. 

The addresses were then geocoded with the North American Address Locator in ArcGIS. The 

schools were then clipped to leave only schools within the study site, and summarized based on 

city to determine the number of schools per CDP. A similar approach was used for the hospitals, 

however the addresses for the medical facilities, including community health centers, hospitals, 

and nursing homes were derived from the U.S. Department of Health and Human Services 

instead. Land use data was derived from the 2006 National Land Cover Database and road types 

were downloaded from the 2010 Census Bureau road shapefiles for New Mexico. 
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